skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fasoro, Titilayo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This research project aims to achieve a future urban environment where people and self-driving cars coexist together while guaranteeing safety. To modify the environment, our first approach is to understand the limitations of GPS/GNSS positioning in an urban area where signal blockages and reflections make positioning difficult. For the evaluation process, we assume reasonable integrity requirements and calculate navigation availability along a sample Chicago urban corridor (State Street). We reject all non-line-of-sight (NLOS) that are blocked and reflected using a 3-D map. The availability of GPS-only positioning is determined to be less than 10% at most locations. Using four full GNSS constellations, availability improves significantly but is still lower than 80 % at certain points. The results establish the need for integration with other navigation sensors, such as inertial navigation systems (INS) and Lidar, to ensure integrity. The analysis methods introduced will form the basis to determine performance requirements for these additional sensors. 
    more » « less